Genome sequence of Lactobacillus helveticus, an organism distinguished by selective gene loss and insertion sequence element expansion.
نویسندگان
چکیده
Mobile genetic elements are major contributing factors to the generation of genetic diversity in prokaryotic organisms. For example, insertion sequence (IS) elements have been shown to specifically contribute to niche adaptation by promoting a variety of genetic rearrangements. The complete genome sequence of the cheese culture Lactobacillus helveticus DPC 4571 was determined and revealed significant conservation compared to three nondairy gut lactobacilli. Despite originating from significantly different environments, 65 to 75% of the genes were conserved between the commensal and dairy lactobacilli, which allowed key niche-specific gene sets to be described. However, the primary distinguishing feature was 213 IS elements in the DPC 4571 genome, 10 times more than for the other lactobacilli. Moreover, genome alignments revealed an unprecedented level of genome stability between these four Lactobacillus species, considering the number of IS elements in the L. helveticus genome. Comparative analysis also indicated that the IS elements were not the primary agents of niche adaptation for the L. helveticus genome. A clear bias toward the loss of genes reported to be important for gut colonization was observed for the cheese culture, but there was no clear evidence of IS-associated gene deletion and decay for the majority of genes lost. Furthermore, an extraordinary level of sequence diversity exists between copies of certain IS elements in the DPC 4571 genome, indicating they may represent an ancient component of the L. helveticus genome. These data suggest a special unobtrusive relationship between the DPC 4571 genome and its mobile DNA complement.
منابع مشابه
Genetic diversity in the lactose operons of Lactobacillus helveticus strains and its relationship to the role of these strains as commercial starter cultures.
Two novel insertion sequence elements, ISLhe1 and ISLhe15, were located upstream of the genes encoding the beta-galactosidase enzyme in Lactobacillus helveticus commercial starter strains. Strains with the IS982 family element, ISLhe1, demonstrated reduced beta-galactosidase activity compared to the L. helveticus type strain, whereas strains with the ISLhe15 element expressed beta-galactosidase...
متن کاملComplete genome sequence of Lactobacillus helveticus H10.
Lactobacillus helveticus strain H10 was isolated from traditional fermented milk in Tibet, China. We sequenced the whole genome of strain H10 and compared it to the published genome sequence of Lactobacillus helveticus DPC4571.
متن کاملIdentification and Characterization of Lactic Acid Bacteria Isolated from Iranian Traditional Dairy Products
The lactic acid bacteria (LAB) are an industrially important group of probiotic organisms that play an important role in human health by inhibiting harmful and pathogen bacteria growth, boosting immune function, and increasing resistance to infection. This study aimed to isolate, identify, and biologically characterize probiotic LAB strains from Iranian traditional dairy products. A ...
متن کاملDraft Genome Sequence of Lactobacillus helveticus Strain Lh 12 Isolated from Natural Whey Starter
Lactobacillus helveticus is a lactic acid bacterium widely used in cheese-making and for the production of bioactive peptides from milk proteins. Here, we describe the draft genome sequence and annotation of L. helveticus strain Lh 12 isolated from natural whey starter used in the production of Grana Padano cheese.
متن کاملDraft Genome Sequence of Lactobacillus helveticus ATCC 12046
Lactobacillus helveticus is a lactic acid bacterium used traditionally in the dairy industry, especially in the manufacture of cheeses. We present here the 2,141,841-bp draft genome sequence of L. helveticus strain ATCC 12046, a potential starter strain for improving cheese production.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 190 2 شماره
صفحات -
تاریخ انتشار 2008